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Abstract

The objective of this paper is to apply the concepts and theories of global impact based on a modern formulation in

which the impact is considered with sliding, adherence or transition between sliding and adherence. The energy dis-

sipated in the contact may be quantified by different definitions of the coefficient of restitution in Newton�s law and

Poisson�s law. The method is applied to the impact between the damper (parabolic elements) and the platform of the

blades in an airborne gas turbine. A numerical solution is calculated using a computer program constructed on the

Matlab Platform.
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1. Introduction

Impact occurs when two bodies collide. This event is usually very short (Brach, 1984; Keller, 1986;

Smith and Liu, 1992). Deformations occur in both bodies, caused first by a compression phase, then by

an expansion phase. Forces generated depend upon the kinematics, initial conditions and contact

dynamics. Impact ends when the normal force between the two bodies tends to zero. Generally, impact

is accompanied by sliding, adherence or transition between sliding and adherence, due to the rela-

tive tangential velocity between the contact surfaces. Contact between bodies is generally dissipative.

Energy dissipated in the contact may be quantified by the coefficients in Newton�s law, Poisson�s law, and
Stronge�s law (Stronge, 1990). Different definitions of the coefficient of restitution give different results
depending on the values of friction, direction of approach velocities, and inertia characteristics of the

system.
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2. Distance between bodies

Fig. 1 shows how the distance between two bodies is defined. Each body may have a rotational velocity

X and a rotational acceleration _XX. The body-fixed point P may move by a velocity vP and may be accele-
rated by aP. The smooth and planar contour R of the body is assumed to be convex and can be described in

parametric form by the vector BrPR, using the body-fixed frame B. The parameter s corresponds to the arc

length of the body. Thus, the moving trihedral ðt; n; bÞ in the curve can be stated in frame B: Bn ¼ Bb�Bt,

with j as the curvature of the contour at point P: jBn ¼ Br
00
PR, where ð Þ

00 ¼ d2ð Þ=ds2. The normal n always

points inward and is directed to the center of the circle of curvature.

The sense of rotation of the curve parameters s1, s2 is chosen so that the binormals of both moving

trihedrals are the same, b1 ¼ b2. The origins of the trihedrals are connected by a distance vector rD. In order

to derive the distance between the bodies it is necessary to satisfy the non-linear problem:
nT1 ðs1Þ � t2ðs2Þ ¼ 0 () nT2 ðs2Þ � t1ðs1Þ ¼ 0 ð1Þ

rTDðs1; s2Þ � t1ðs1Þ ¼ 0; rTDðs1; s2Þ � t2ðs2Þ ¼ 0 ð2Þ
It is necessary that one of Eqs. (1) and one of (2) are satisfied. The values ðs1; s2Þ are called the ‘‘contact

parameters’’, and the corresponding points ðC1;C2Þ the ‘‘contact points’’. For this configuration the rela-

tions between the axes of both trihedrals are given by:
n1 ¼ �n2; t1 ¼ �t2; b1 ¼ b2 ð3Þ
and the distance gN between the bodies is determined by:
gNðq; tÞ ¼ rTDn2 ¼ �rTDn1 ð4Þ
3. Movement equations

A generalized coordinate system q is chosen, so that velocity, acceleration or variation may be expressed

in a linear form by means of the terms corresponding to the generalized coordinates. The equation of

motion in a reduced form function of the generalized coordinates was presented by (Pfeiffer and Glocker,

1996):
Mðq; tÞ€qq� hðq; _qq; tÞ ¼ 0 2 Rf ð5Þ
Fig. 1. Distance between bodies. General orientation trihedrals.
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where f represents the degree of freedom,M 2 Rf�f is the matrix of mass, and h 2 Rf is the vector which is

the addition of all the movements and active forces. The contact forces in Eq. (5) are considered by using a

Lagrangian approach, consisting of multiplying the forces of every body by the vectors of transformation

that correspond, then adding them to Eq. (5). N and H represent the normal and tangential directions,
respectively.

Now, if there is a system with nG contact points, four groups of indices which describe the kinematic

state of every contact are introduced.
IG ¼ f1; 2; . . . ; nGg
IS ¼ fi 2 IGjgNi ¼ 0g with nS elements

IN ¼ fi 2 ISj _ggNi
¼ 0g with nN elements

IH ¼ fi 2 INj _ggHi
¼ 0g with nH elements

ð6Þ
The IG group corresponds to the nG number of all the contact points, IS consists of the nS indices with

relative distance zero, but with an arbitrary relative velocity, IN represents the restrictions that are necessary

for a continuous contact (null distance and zero relative velocity in the normal direction), and IH are the

adherence points. Dividing tangential forces into the sliding and adherence forces and writing the equations

as a matrix:
M€qq� h� ½WN þWGlG WH�
kN

kH

" #
¼ 0 2 Rf

€ggN

€ggH

 !
¼

WT
N

WT
H

 !
€qqþ

-N

-H

 !
2 RnNþnH

ð7Þ
Here, lG is a matrix diagonal that contains all the coefficients of friction of the points of sliding, WN, WG,
WH are matrices of transformation between the generalized coordinates and the local coordinates,

ð kN kH ÞT vector normal and tangential force, and ð-N -H ÞT are acceleration vectors that relate the

generalized coordinates with the local coordinates.

Newton�s law is one of the most used laws in case of impact, and it connects the normal relative velocity

before and after the impact: _ggNE ¼ � �22N _ggNA: �22N ¼ diagf2Nig, which contains the n�S coefficients of resti-

tution whose values range between 06 2Ni 6 1. Replacing Newton�s law, the velocity in generalized co-

ordinates after the impact is _qqE ¼ _qqA �M�1WNG
�1
N ðIþ �22Þ _ggNA. Here, I is a matrix identity, and GN is the

effective mass matrix. Another option is Poisson�s law, which connects the normal impulse of expansion
with the impulse of compression ðKNE ¼ � �22KNCÞ, where KNC ¼ limtC!0

R tC
tA
kNi dti represent the normal

impulse of compression, and KHC the tangential impulse. This law is generally applied to systems with

friction, so it can be attached with Coulomb�s law.
4. Example (Baeza, 2000)

This theory is applied to a problem of contact between a parabolic element of friction, which occurs

between the platform and the blades in an aeroplane�s gas turbine. It can be modeled as a problem of

contact between a parabola (damper) and a right line (blades� base), shown in Fig. 2.

The quadruple coordinates q ¼ ðz;u; x; yÞT must be used to describe the displacements of the platform

and the damper, where z describes the horizontal position of the base fixed to the platform, and ðu; x; yÞ
describe the displacements and rotation of the damper. The outlines under investigation are R1 and R2.



Fig. 2. Problem of contact in a turbine: (a) Turbine physical representation and (b) mechanical model.
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They are described by the functions y ¼ ax and y ¼ �p1x2 þ p2, in relation to the coordinates B and K fixed

to the bodies. The movement equation of the parabola is given by:
m 0 0

0 m 0

0 0 Iq

0
@

1
A €xx

€yy
€uu

0
@

1
Aþ

0

mg
0

0
@

1
A ¼

0

0
0

0
@

1
A ð8Þ
where g is the gravity acceleration, m is a mass, and Iq the inertia of parabola. The distance in the normal

direction is given by:
gN ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p ½b� y þ ax� az� ðp1r2
2 þ p2Þða sinuþ cosuÞ� ð9Þ
where the normal relative velocity (N) and tangential relative velocity (H) are:
_ggN ¼ xT
N
_qqþ -N; _ggH ¼ xT

H
_qqþ -H ð10Þ
with
xY
N ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
p �a

1

2p1
þ p1r2

2 � p2

� �
ða cosu� sinuÞ a �1

� �
; -N ¼ 0

xY
H ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
p �1 �ðp1r2

2 � p2Þða sinu� cosuÞ 1 a
� �

; -H ¼ 0
A computational program that resolves the movement equations using the fourth-order method of

Runge–Kutta in MATLAB is implemented. It is supposed that both platforms have infinite mass, and point

P2 coincides with the center of gravity of the parabolic damper (Table 1).

Analysis of the impact is first divided in two phases: compression and expansion, obtaining the following

equations:

Phase of compression (C):
_ggNC

_ggHC

 !
¼ WT

N

WT
H

 !
_qqC þ

-N

-H

� �
ð11Þ



 

Table 1

General data for contact between the platform of the blade and the damper in airborne gas turbine

Data x y u

Position of point P1 1 m 3 m 0

Position of point P3 8 m 9 m 0

Velocity and acceleration 0 0 0

Tangent of the straight line 2.5

Position of point P2 5 8 0

Velocity of point P2 )4 12 0

Parabola parameters p1 ¼ �2; p2 ¼ 2

Parabola mass: m (kg) 10

Inertia of parabola: I (kgm2) 30
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Mð _qqC � _qqAÞ � WN WHð Þ KNC

KHC

� �
¼ 0 ð12Þ
and the complementary condition:
KNC � _ggNC ¼ 0; KNC P 0; _ggNC P 0 ð13Þ
Phase of expansion (E):
_ggNE

_ggHE

!
¼ WT

N

WT
H

 !
_qqE þ

-N

-H

� �
ð14Þ
Mð _qqE � _qqCÞ � WN WHð Þ KNE

KHE

� �
¼ 0 ð15Þ
and the complementary condition:
KNE _ggNE ¼ 0; KNE P 0; _ggNE P 0 ð16Þ
The friction term relates the distance and tangential velocity between the bodies if there is sliding and

adhesion. Clearing the normal and tangential velocity in each phase, it is obtained as:
Compression
_ggNC ¼ AKNC þ BKTC þ _ggNA

_ggHC ¼ BKNC þ CKHC þ _ggHA

�
ð17Þ
expansion
_ggNE ¼ AKNE þ BKTE þ _ggNC

_ggHE ¼ BKNE þ CKHE þ _ggHC

�
ð18Þ
with
A ¼ xT
NM

�1xN; B ¼ xT
NM

�1xH; C ¼ xT
HM

�1xH ð19Þ
_ggNC ¼ 0 is the velocity at the end of the compression phase. The simulations are made supposing that
the damper moves and the platform stay fixed. With the equations of the raised movement and theo-

ries of shock, a computational program is implemented that shows the occurrence of the shock and
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gives results of positions, velocities, accelerations, energies, and forces of impact. The following cases are

studied.

4.1. Newton’s law without friction

In this case, the tangential component has no influence ð _ggHA ¼ _ggHEÞ since velocity is maintained in that

direction and the results depend exclusively on the normal components and the coefficient of restitution.

Using the law of Newton ð _ggNE ¼ �� _ggNAÞ, the normal impulse is given by: KNC ¼ �ð _ggNA=AÞ, with

A ¼ xT
NM

�1xN. Using the law of Poisson, KNE ¼ �KNA, the normal impulse of compression is given by

KNC ¼ �ð _ggNA=AÞ. The normal velocity at the end of the expansion is given by _ggNE ¼ AKNE. When the

impulse is replaced: _ggNE ¼ �ðA� _ggNA=AÞ ¼ �� _ggNA. Therefore, when friction is not considered, the theories

are analogous. The results for � ¼ 1 appear in Fig. 3. In this case they are the results indicated in Table 2.
Fig. 3a and b show an animation of the movement and shocks of the bodies. Fig. 3c indicates how the

normal distance gN varies between the bodies that collide, and Fig. 3d shows the variation of the energy.

The total energy of the system stays constant (impact completely elastic).

4.2. Contact problems with friction

If friction is considered, we can analyze some situations of interest depending upon the theory of impact

used.

4.2.1. Newton’s law with adherence

For the bodies to adhere, during the compression phase _ggHC ¼ 0, and thus, using (17):
KNC ¼ ðB _ggHA � C _ggNAÞ
ðCA� B2Þ y; and KHC ¼ �ðAKNC þ _ggNCÞ

B

For the expansion phase, normal velocity is given by _ggNE ¼ �� _ggNA, and the tangential velocity due to the

adhesion is zero ( _ggHE ¼ 0). The results are shown in Fig. 4 and Table 3 shows some values obtained. Impact
with adherence produces rotation in a parabola. Fig. 4a shows the central point movement and Fig. 4c

shows the large loss of energy in the first impact.

4.2.2. Newton’s law with sliding

When sliding occurs, Coulomb�s law applies. The phase of compression is KHC ¼ �lKNC, where the

sense of the tangential impulse must be inverse to _ggHA. Replacing _ggHA in Eq. (17):
KNC ¼ � _ggNA

ðA� lBÞ

The tangential velocity at the end of the compression phase is _ggHC ¼ AKNC þ BKHC þ _ggHA. For the ex-

pansion phase, by the law of Newton: _ggNE ¼ �� _ggNA. In addition, by the law of Coulomb: KHE ¼ lKNE.

Replacing these quantities in Eq. (18):
KNE ¼ � _ggNE

ðA� lBÞ

where the tangential velocity at the end of the impact is _ggHE ¼ BKNE þ CKHE þ _ggHC. The results obtained

are shown in Fig. 5 and Table 4, for the case of l ¼ 0:5.

4.2.3. Poisson law with adherence

Adhesion requires that _ggHC ¼ 0. Replacing this value in the compression phase of (17) yields:
KNC ¼ ðB _ggHA � C _ggNAÞ
ðCA� B2Þ and KHC ¼ �ðA _ggNC þ _ggNCÞ

B



Fig. 3. (a), (b) Animation by Newton without friction, (c) variation of normal distance and (d) energy variations.

Table 2

Impact time and velocities in Newton�s law without friction (Fig. 3)

Impacts Point 1 Point 2 Point 3

Time (s) 0.34 0.54 0.78

_ggNA (m/s) )6.93 )10.18 )7.24
_ggTA (m/s) 6.56 4.72 )11.84
KNC (N s) 63.79 76.52 48.01
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For the expansion phase, Poisson�s law requires that KNE ¼ �KNC, which when replaced in (18) yields:
KHE ¼ �BKNE

C
ð20Þ
where the normal speed at the end of the expansion is _ggNE ¼ AKNE þ BKHE. The results are shown in Fig. 6
and Table 5.



Fig. 4. (a) Animation by Newton with adherence, (b) variations of normal distance and (c) energy variations.

Table 3

Impact time and velocities in Newton’s law with adherence (Fig. 4)

Impacts Point 1 Point 2

Time (s) 0.34 0.73

_ggNA (m/s) )6.93 )4.71
_ggHA (m/s) 6.56 6.54

KNC 73.98 20.53

KHC )54.79 )36.94
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The figures show that three impacts occur. Table 5 shows that the tangential impulse has the opposite
sense to the tangential velocity. The greatest loss of energy occurs in the third impact, and is a product of

the greater tangential velocity.



Fig. 5. (a) Animation by Newton with sliding, (b) variations of normal distance and (c) energy variations.

Table 4

Impact time and velocities in Newton�s law with adherence (Fig. 5)

Impacts Point 1 Point 2

Time (s) 0.34 0.76

_ggNA (m/s) )6.93 )3.80
_ggTA (m/s) 6.56 6.97

KNC (N s) 70.33 29.37

KTC (N s) )35.17 )14.69
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4.2.4. Poisson law with sliding

First, the law of Coulomb is considered, which in the compression phase is KHC ¼ �lKNC, where the

sense of the tangential impulse must be inverse to _ggHA. Replacing these values in Eq. (18) yields



Fig. 6. (a) Animation by Poisson with adherence, (b) variations of normal distance and (c) energy variations.

Table 5

Impact time and velocities in Newton�s law with adherence (Fig. 6)

Impacts Point 1 Point 2 Point 3

Time (s) 0.34 0.69 0.92

_ggNA (m/s) )6.93 )5.61 )3.52
_ggTA (m/s) 6.56 6.96 9.77

KNC (N s) 73.98 26.98 5.09

KTC (N s) )54.79 )36.04 )56.25

4952 G. Barrientos, L. Baeza / International Journal of Solids and Structures 40 (2003) 4943–4954
KNC ¼ � _ggNA

ðA� lBÞ ð21Þ
The tangential velocity at the end of the compression phase is given by _ggHC ¼ AKNC þ BKHC þ _ggHA. For the
phase of expansion KNE ¼ �KNA, and from Coulomb�s law, KHE ¼ lKNE. Replacing these values in (18)



Fig. 7. (a) Animation by Poisson with sliding, (b) variations of normal distance and (c) energy variations.

Table 6

Impact time and velocities in Poisson�s law with sliding (Fig. 7)

Impacts Point 1 Point 2

Time (s) 0.34 0.81

_ggNA (m/s) )6.93 )3.66
_ggTA (m/s) 6.56 7.41

KNC (N s) 70.33 24.42

KTC (N s) )35.17 )12.21
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yields KNE ¼ ð� _ggNE=ðA� lBÞÞ, where the tangential velocity at the end of the impact is _ggHE ¼
BKNE þ CKHE þ _ggHC. The results are shown in Fig. 7 and Table 6 for the case of l ¼ 0:5. Fig. 7 shows two

impacts. Due to friction, energy is lost during each impact. The greater loss of energy takes place in the first

impact, and is a product of the greater tangential velocity.
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5. Conclusions

A program using MATLAB is available. It allows the solution of different configurations for impact

between rigid bodies. The Runge-Kutta method was used to integrate equations of motion. The results of
other examples (not shown in this paper) were compared with others obtained by different authors. They

showed appropriate accuracy. An applied example is shown, where the choice of an adequate coefficient of

restitution has great importance in determining what happens after the impact, as well as knowing what

would happen in subsequent impacts. A comparison of the results obtained by using Newton�s and Pois-

son�s theories, shows that they are different in every case.
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