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Abstract

The objective of this paper is to apply the concepts and theories of global impact based on a modern formulation in
which the impact is considered with sliding, adherence or transition between sliding and adherence. The energy dis-
sipated in the contact may be quantified by different definitions of the coefficient of restitution in Newton’s law and
Poisson’s law. The method is applied to the impact between the damper (parabolic elements) and the platform of the
blades in an airborne gas turbine. A numerical solution is calculated using a computer program constructed on the
Matlab Platform.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Impact occurs when two bodies collide. This event is usually very short (Brach, 1984; Keller, 1986;
Smith and Liu, 1992). Deformations occur in both bodies, caused first by a compression phase, then by
an expansion phase. Forces generated depend upon the kinematics, initial conditions and contact
dynamics. Impact ends when the normal force between the two bodies tends to zero. Generally, impact
is accompanied by sliding, adherence or transition between sliding and adherence, due to the rela-
tive tangential velocity between the contact surfaces. Contact between bodies is generally dissipative.
Energy dissipated in the contact may be quantified by the coefficients in Newton’s law, Poisson’s law, and
Stronge’s law (Stronge, 1990). Different definitions of the coefficient of restitution give different results
depending on the values of friction, direction of approach velocities, and inertia characteristics of the
system.
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2. Distance between bodies

Fig. 1 shows how the distance between two bodies is defined. Each body may have a rotational velocity
Q and a rotational acceleration Q. The body-fixed point P may move by a velocity vp and may be accele-
rated by ap. The smooth and planar contour X of the body is assumed to be convex and can be described in
parametric form by the vector prpy, using the body-fixed frame B. The parameter s corresponds to the arc
length of the body. Thus, the moving trihedral (t,n,b) in the curve can be stated in frame B: gn = gb Xpt,
with « as the curvature of the contour at point P: xgn = prls;, where ()" = d*()/ds?. The normal n always
points inward and is directed to the center of the circle of curvature.

The sense of rotation of the curve parameters s, s, is chosen so that the binormals of both moving
trihedrals are the same, b; = b,. The origins of the trihedrals are connected by a distance vector rp. In order
to derive the distance between the bodies it is necessary to satisfy the non-linear problem:

Ny (s1)  t(s2) =0 = my(s2) - ti(s1) = 0 (1)

rB(S]7S2) o (Sl) = O, rE(S1,S2) . tz(Sz) =0 (2)

It is necessary that one of Egs. (1) and one of (2) are satisfied. The values (s;,s,) are called the “contact
parameters”, and the corresponding points (C;, C;) the “contact points”. For this configuration the rela-
tions between the axes of both trihedrals are given by:

n=-m; t=-—t; b =hb 3)
and the distance gn between the bodies is determined by:

gn(q,t) =rim = —rimy 4)

3. Movement equations

A generalized coordinate system q is chosen, so that velocity, acceleration or variation may be expressed
in a linear form by means of the terms corresponding to the generalized coordinates. The equation of
motion in a reduced form function of the generalized coordinates was presented by (Pfeiffer and Glocker,
1996):

M(q,1)§ —h(q,q,1) =0 € % (5)

Fig. 1. Distance between bodies. General orientation trihedrals.
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where f represents the degree of freedom, M € R/ is the matrix of mass, and h € %/ is the vector which is

the addition of all the movements and active forces. The contact forces in Eq. (5) are considered by using a
Lagrangian approach, consisting of multiplying the forces of every body by the vectors of transformation
that correspond, then adding them to Eq. (5). N and H represent the normal and tangential directions,
respectively.

Now, if there is a system with ng contact points, four groups of indices which describe the kinematic
state of every contact are introduced.

IG = {1,2,...71’10}
Is = {i € Ig|gn, = 0}  with ng elements

(6)

In = {i € Is|gy, = 0} with ny elements
Iy = {i € IN|gy, = 0} with ny elements

The I group corresponds to the ng number of all the contact points, /5 consists of the ng indices with
relative distance zero, but with an arbitrary relative velocity, Iy represents the restrictions that are necessary
for a continuous contact (null distance and zero relative velocity in the normal direction), and Iy are the
adherence points. Dividing tangential forces into the sliding and adherence forces and writing the equations
as a matrix:

i _
N] —0e %R
i

H

. T
B) o (M) (™) e e
gH WH WH

Here, p is a matrix diagonal that contains all the coefficients of friction of the points of sliding, Wy, Wg,
Wy are matrices of transformation between the generalized coordinates and the local coordinates,
(ix Ay )" vector normal and tangential force, and (wy @y )" are acceleration vectors that relate the
generalized coordinates with the local coordinates.

Newton’s law is one of the most used laws in case of impact, and it connects the normal relative velocity
before and after the impact: gyz = —Engna-En = diag{€y,}, which contains the n§ coefficients of resti-
tution whose values range between 0 < €y, < 1. Replacing Newton’s law, the velocity in generalized co-
ordinates after the impact is g = 4 — M'WNGy' (I + €)gn,. Here, I is a matrix identity, and Gy is the
effective mass matrix. Another option is Poisson’s law, which connects the normal impulse of expansion
with the impulse of compression (Ang = —€Anc), where Anc = lim,._ f;c Ax, dt; represent the normal
impulse of compression, and Agc the tangential impulse. This law is generally applied to systems with
friction, so it can be attached with Coulomb’s law.

Mg —h— [Wy+Wepg Wyl

(7

4. Example (Baeza, 2000)

This theory is applied to a problem of contact between a parabolic element of friction, which occurs
between the platform and the blades in an aeroplane’s gas turbine. It can be modeled as a problem of
contact between a parabola (damper) and a right line (blades’ base), shown in Fig. 2.

The quadruple coordinates q = (z, ¢, x, y)T must be used to describe the displacements of the platform
and the damper, where z describes the horizontal position of the base fixed to the platform, and (¢,x,y)
describe the displacements and rotation of the damper. The outlines under investigation are X~ and 2.
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Fig. 2. Problem of contact in a turbine: (a) Turbine physical representation and (b) mechanical model.

They are described by the functions y = ax and y = —p;x*> + pa, in relation to the coordinates B and K fixed
to the bodies. The movement equation of the parabola is given by:

m 0 0 X 0 0
0 m 0 y)+|mg|=10 (8)
0 0 1, ) 0 0

where g is the gravity acceleration, m is a mass, and 7, the inertia of parabola. The distance in the normal
direction is given by:

1 ) .
gN:ﬁ[b—erax—az—(p]az + p2)(asin ¢ + cos )] 9)
where the normal relative velocity (N) and tangential relative velocity (H) are:
g = o\ +on; gy = opd +on (10)
with
oY = |4 th 03 —py |(acosp —sing) a —1|; @n=0
N — \/1—1——512 2]71 P10, — P @ ® ) N =
1
Y .~ [_ _ 2 _ H _ . —
wH_\/lJr—arz[ 1 —(pio3 —p)(asing —cosp) 1 a]; @wu=0

A computational program that resolves the movement equations using the fourth-order method of
Runge-Kutta in MATLAB is implemented. It is supposed that both platforms have infinite mass, and point
P, coincides with the center of gravity of the parabolic damper (Table 1).

Analysis of the impact is first divided in two phases: compression and expansion, obtaining the following
equations:

Phase of compression (C):

()= (W )aer (2) an
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Table 1
General data for contact between the platform of the blade and the damper in airborne gas turbine
Data X y ®
Position of point P, I m 3m 0
Position of point P; 8 m 9 m 0
Velocity and acceleration 0 0 0
Tangent of the straight line 2.5
Position of point P, 5 0
Velocity of point P, -4 12 0
Parabola parameters p=-2pp=2
Parabola mass: m (kg) 10
Inertia of parabola: I (kgm?) 30
M(gc — ¢ Wy W) (A 2o 12
(e =) = (Wx Wi [ ) = (12)

and the complementary condition:
Anc  8ne=0; Anc20; gy =0 (13)
Phase of expansion (E):

0 Wi, @
)= (e Jae (20 (14)
8HE Wy Ty
. . ANE
M~ )~ (Wx W) (4] <0 (15)
HE
and the complementary condition:

Angne =0 Ane=0; g =0 (16)

The friction term relates the distance and tangential velocity between the bodies if there is sliding and
adhesion. Clearing the normal and tangential velocity in each phase, it is obtained as:
Compression

gxc = AAnc + BAtc + gy an
gHC == BANC + CAHC + gHA
expansion
gne = AANE + BATE + €nc (18)
gur = BANe + CAnE + e
with
A= wIEMfle; B= w{IM*IwH; C = w;M*IwH (19)

gxc = 0 is the velocity at the end of the compression phase. The simulations are made supposing that
the damper moves and the platform stay fixed. With the equations of the raised movement and theo-
ries of shock, a computational program is implemented that shows the occurrence of the shock and
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gives results of positions, velocities, accelerations, energies, and forces of impact. The following cases are
studied.

4.1. Newton’s law without friction

In this case, the tangential component has no influence (g4, = gyr) since velocity is maintained in that
direction and the results depend exclusively on the normal components and the coefficient of restitution.
Using the law of Newton (gyp = —egna), the normal impulse is given by: Anc = —(gwa/4), With
A= m{IM’lmN. Using the law of Poisson, Ang = €Ana, the normal impulse of compression is given by
Anc = —(gna/A4). The normal velocity at the end of the expansion is given by gz = AAng. When the
impulse is replaced: gyg = —(degna/4) = —egna- Therefore, when friction is not considered, the theories
are analogous. The results for e = 1 appear in Fig. 3. In this case they are the results indicated in Table 2.
Fig. 3a and b show an animation of the movement and shocks of the bodies. Fig. 3c indicates how the
normal distance gy varies between the bodies that collide, and Fig. 3d shows the variation of the energy.
The total energy of the system stays constant (impact completely elastic).

4.2. Contact problems with friction

If friction is considered, we can analyze some situations of interest depending upon the theory of impact
used.

4.2.1. Newton's law with adherence

For the bodies to adhere, during the compression phase g, = 0, and thus, using (17):
(Bgua — C8na) —(4Axc + gnc)

(C4 — B?) B
For the expansion phase, normal velocity is given by gyz = —egna» and the tangential velocity due to the
adhesion is zero (g = 0). The results are shown in Fig. 4 and Table 3 shows some values obtained. Impact
with adherence produces rotation in a parabola. Fig. 4a shows the central point movement and Fig. 4c
shows the large loss of energy in the first impact.

Anc = ¥; and Ayc =

4.2.2. Newton's law with sliding
When sliding occurs, Coulomb’s law applies. The phase of compression is Ayc = £pAnc, Where the
sense of the tangential impulse must be inverse to g;,. Replacing g, in Eq. (17):
—8nA
Axe (4 — uB)
The tangential velocity at the end of the compression phase is gy = AAnc + BAuc + gy,. For the ex-
pansion phase, by the law of Newton: g\ = —egya- In addition, by the law of Coulomb: Apg = pHANE.
Replacing these quantities in Eq. (18):
€8NE
AN =T B)
where the tangential velocity at the end of the impact is gz = BANg + CApg + gy The results obtained
are shown in Fig. 5 and Table 4, for the case of u = 0.5.

4.2.3. Poisson law with adherence
Adhesion requires that g, = 0. Replacing this value in the compression phase of (17) yields:
(Bgua — C8na) and  Apc = —(4gnc + 8ne)

A =
NC (CA — B?) B
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Fig. 3. (a), (b) Animation by Newton without friction, (c) variation of normal distance and (d) energy variations.

Table 2

Impact time and velocities in Newton’s law without friction (Fig. 3)
Impacts Point 1 Point 2 Point 3
Time (8) 0.34 0.54 0.78
gua (M/s) -6.93 -10.18 -7.24
gra (M/s) 6.56 4.72 —-11.84
Axc (Ns) 63.79 76.52 48.01

For the expansion phase, Poisson’s law requires that Axg = €Anc, which when replaced in (18) yields:

AHE =

—BANE

C

(20)

where the normal speed at the end of the expansion is gy = AAng + BAug. The results are shown in Fig. 6

and Table 5.
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Fig. 4. (a) Animation by Newton with adherence, (b) variations of normal distance and (c) energy variations.

Table 3

Impact time and velocities in Newton’s law with adherence (Fig. 4)
Impacts Point 1 Point 2
Time (s) 0.34 0.73
gna (m/s) -6.93 -4.71
gua (M/s) 6.56 6.54
Anc 73.98 20.53
Anc -54.79 -36.94

The figures show that three impacts occur. Table 5 shows that the tangential impulse has the opposite
sense to the tangential velocity. The greatest loss of energy occurs in the third impact, and is a product of
the greater tangential velocity.
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Fig. 5. (a) Animation by Newton with sliding, (b) variations of normal distance and (c) energy variations.

Table 4

Impact time and velocities in Newton’s law with adherence (Fig. 5)
Impacts Point 1 Point 2
Time (s) 0.34 0.76
gua (M/s) -6.93 -3.80
gra (m/s) 6.56 6.97
Anc (N's) 70.33 29.37
Arc (Ns) -35.17 —14.69

4.2.4. Poisson law with sliding
First, the law of Coulomb is considered, which in the compression phase is Ayc = +uAnc, Where the
sense of the tangential impulse must be inverse to g,,. Replacing these values in Eq. (18) yields
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Fig. 6. (a) Animation by Poisson with adherence, (b) variations of normal distance and (c) energy variations.
Table 5
Impact time and velocities in Newton’s law with adherence (Fig. 6)
Impacts Point 1 Point 2 Point 3
Time (s) 0.34 0.69 0.92
gua (M/s) -6.93 -5.61 -3.52
gra (M/s) 6.56 6.96 9.77
Anc (N's) 73.98 26.98 5.09
Arc (N's) -54.79 -36.04 -56.25
_gNA
Ance = —— 21
<= uB) (21)

The tangential velocity at the end of the compression phase is given by g, = AAnc + BAuc + - For the
phase of expansion Ang = €Ana, and from Coulomb’s law, Ay = pAng. Replacing these values in (18)
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Fig. 7. (a) Animation by Poisson with sliding, (b) variations of normal distance and (c) energy variations.

Table 6

Impact time and velocities in Poisson’s law with sliding (Fig. 7)
Impacts Point 1 Point 2
Time (8) 0.34 0.81
gua (M/8) -6.93 —-3.66
gra (M/s) 6.56 7.41
Anc (Ns) 70.33 24.42
Arc (Ns) -35.17 -12.21

yields Ang = (egnp/(4 — uB)), where the tangential velocity at the end of the impact is gyp =
BANE + CAgg + gy The results are shown in Fig. 7 and Table 6 for the case of p = 0.5. Fig. 7 shows two
impacts. Due to friction, energy is lost during each impact. The greater loss of energy takes place in the first
impact, and is a product of the greater tangential velocity.
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5. Conclusions

A program using MATLAB is available. It allows the solution of different configurations for impact
between rigid bodies. The Runge-Kutta method was used to integrate equations of motion. The results of
other examples (not shown in this paper) were compared with others obtained by different authors. They
showed appropriate accuracy. An applied example is shown, where the choice of an adequate coefficient of
restitution has great importance in determining what happens after the impact, as well as knowing what
would happen in subsequent impacts. A comparison of the results obtained by using Newton’s and Pois-
son’s theories, shows that they are different in every case.
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